無鉛電子產(chǎn)品PCBA可靠性研究
2020-05-19 12:01:49
221
【文摘】電子工業(yè)正向無鉛電子產(chǎn)品轉(zhuǎn)移,既為了符合政府法規(guī),也為了通過產(chǎn)品的差異性提高市場份額??紤]到含鉛電子產(chǎn)品已經(jīng)使用了40多年,所以采用無鉛技術(shù)代表了重大的變化。無鉛電子產(chǎn)品的制造涉及利用無鉛焊料合金將無鉛元件裝配到無鉛印刷電路板上。學(xué)術(shù)界及工業(yè)界針對(duì)的關(guān)鍵問題包括無鉛焊料合金的選擇、無鉛焊料合金的性質(zhì)特點(diǎn)及在各種應(yīng)力負(fù)載條件下的性狀,無鉛制造、物流及知識(shí)產(chǎn)權(quán)問題、無鉛裝配可靠性評(píng)價(jià)。
CALCE EPSC一直從事于研究,使工業(yè)界能順利地轉(zhuǎn)向無鉛電子產(chǎn)品。本文綜述了CALCE EPSC所承擔(dān)的對(duì)各種問題的研究,包括焊點(diǎn)可靠性、金屬間生長和元件水平可靠性問題(如在貴金屬預(yù)鍍引線座元件中錫枝狀晶體析出及蠕變腐蝕)。本文還提出了為了保證無鉛電子產(chǎn)品的長期可靠性所需要進(jìn)行的研究,并探討了正在進(jìn)行的實(shí)驗(yàn)研究。
為了符合各項(xiàng)政府法規(guī)及社會(huì)問題,電子工業(yè)正從錫-鉛產(chǎn)品向無鉛產(chǎn)品轉(zhuǎn)移。這種轉(zhuǎn)移是被產(chǎn)量大的消費(fèi)電子、計(jì)算機(jī)和通訊工業(yè)所驅(qū)動(dòng)的[1-6]。在名為《無鉛電子產(chǎn)品》[1]這本書中介紹了工業(yè)的現(xiàn)狀、以及與無鉛電子轉(zhuǎn)移相關(guān)的關(guān)鍵技術(shù)問題和商業(yè)問題。
從定義上看,無鉛焊接組件涉及的是僅使用無鉛材料。這既適用于印刷電路板(PCB)的焊接材料(即表面安裝型的焊膏或通孔組件的波焊)也適用于元件端子及PCB安裝貼片上的表面電鍍。Ganesan 和 Pecht [1]對(duì)無鉛焊料合金成分進(jìn)行了概述。目前,銀、銅、鉍及銻的不同組合而形成的富錫合金是無鉛焊料主要的可選材料。在這些材料中,錫-銀-銅(SAC)共晶合金(其熔點(diǎn)約217°C),似乎是一種最有前景的組成,這是基于目前工業(yè)趨勢,以及CALCE EPSC、國際錫研究所(ITRI)、國家電子制造促進(jìn)會(huì)(NEMI)和日本電子信息技術(shù)工業(yè)協(xié)會(huì)(JEITA)的推薦。
三元SAC合金有300多項(xiàng)無鉛專利。專利取決于這樣一些因素如“焊料合金組成”、“焊點(diǎn)”或“金屬間化合物”。有關(guān)無鉛合金的專利和知識(shí)產(chǎn)權(quán)問題已經(jīng)在CALCE承擔(dān)的研究中進(jìn)行了討論。
CALCE EPSC還承擔(dān)了日本無鉛電子現(xiàn)狀的研究[16-17]、無鉛轉(zhuǎn)移對(duì)制造的影響研究[18-20]、無鉛陶瓷片狀電容器的斷裂研究[21-22]、無鉛焊點(diǎn)的性能研究[23-24]、無鉛小片連接的疲勞[25]。此外,CALCE已經(jīng)進(jìn)行了各種可靠性研究,這將在下面討論。
2. 無鉛可靠性研究
可靠性是向無鉛電子產(chǎn)品轉(zhuǎn)移中關(guān)注的問題。在利用無鉛焊料時(shí)突出的可靠性問題是,焊點(diǎn)可靠性、金屬間生長、預(yù)鍍引線座元件的蠕變腐蝕和錫枝狀晶體析出。在各種研究中已經(jīng)針對(duì)這些問題進(jìn)行了探討,在本部分將詳細(xì)介紹。2.1 CALCE的焊點(diǎn)研究
下面是基于無鉛焊點(diǎn)可靠性文獻(xiàn)而得出幾個(gè)突出點(diǎn)。首先,這些研究中90%以上是利用SnAgCu(錫-銀-銅)合金進(jìn)行的。其次,已經(jīng)考慮了各種各樣的電子組裝,但大多數(shù)都是表面安裝區(qū)域布陣的元件如:球柵陣列(BGA)、晶片比例封裝(CSP)、倒焊晶片(FP)封裝、方形平裝(QFP)。結(jié)果發(fā)現(xiàn),對(duì)無鉛波焊裝配的通孔元件的無鉛焊點(diǎn)長期可靠性的研究不夠;特別是,單面電路板。第三,已經(jīng)研究了無鉛焊點(diǎn)在循環(huán)溫度條件下的熱機(jī)械耐久性,極端溫度循環(huán)范圍有:
0 ~ +100°C、-40 ~ +125°C或-55 ~ +125°C,而-40oC ~ 125oC溫度循環(huán)是最廣泛采用的。在上述試驗(yàn)條件下失效前的循環(huán)次數(shù)一般達(dá)到幾千次。
另一方面,在使用壽命過程中焊點(diǎn)所經(jīng)歷的應(yīng)力狀況。與含有非柔性焊點(diǎn)的無鉛陶瓷晶片組裝(熱不匹配應(yīng)力大)相比,組裝(如QFP和PBGA)中的焊點(diǎn)所經(jīng)受的應(yīng)力較少(由于焊點(diǎn)的柔性和熱不匹配應(yīng)力低)。CALCE以往的研究得出結(jié)論,非柔性無鉛焊點(diǎn)(如在無鉛陶瓷晶片載體中的)的性能低于錫鉛(Sn-Pb)焊點(diǎn)[5-13]的性能。另一方面,對(duì)于塑料QFP和PBGA,情況正好相反(無鉛焊點(diǎn)的性能高于錫鉛焊點(diǎn)),這與工業(yè)界及學(xué)術(shù)界的幾個(gè)獨(dú)立的研究所報(bào)告的熱-機(jī)械耐久性結(jié)果是一致的。
最后,發(fā)現(xiàn)在振動(dòng)負(fù)載條件下失效前循環(huán)的次數(shù)大大低于溫度循環(huán)下的次數(shù)。然而,與單一負(fù)載試驗(yàn)相比,組合負(fù)載條件可能更代表實(shí)際的應(yīng)用環(huán)境。目前還沒有在組合負(fù)載條件(如溫度循環(huán)和振動(dòng)條件)下無鉛電子產(chǎn)品的長期可靠性的數(shù)據(jù)。
2.2 CALCE金屬間化合物的研究
為了產(chǎn)生可靠的SMT貼片加工焊點(diǎn),在焊料-貼片界面上金屬間化合物(IMC)的形成是必要的。然而,生成的IMC過多則會(huì)導(dǎo)致界面脆化,從而在產(chǎn)品的使用壽命期間引起焊料失效。IMC的形成基于兩個(gè)因素:在焊接過程中焊料合金與貼片金屬間的潤濕反應(yīng);在產(chǎn)品的儲(chǔ)存及使用壽命期間固體狀態(tài)的老化。在潤濕反應(yīng)過程中,焊料中存在的錫與貼片金屬發(fā)生化學(xué)反應(yīng)形成金屬間化合物(IMC)。IMC形成的程度取決于貼片金屬的類型,如銅、鎳、浸銀或浸錫。在貼片金屬含有銅、浸錫和浸銀的情況下,則形成銅-錫IMC。而在浸銀的情況下,也形成銀-錫IMC。在貼片金屬含有鎳的情況下,則形成錫-銅-鎳IMC。
在固體狀態(tài)老化中,由于反應(yīng)物在初始形成的IMC上的擴(kuò)散從而形成了IMC。已經(jīng)報(bào)告了由于高溫老化而使無鉛焊點(diǎn)上金屬間化合物的生成。CALCE EPSC [1, 14-15]所進(jìn)行的研究表明,在暴露于高溫老化過程中,由于反應(yīng)產(chǎn)物在固態(tài)擴(kuò)散,使金屬間化合物生長。金屬間化合物的生長是時(shí)間的平方根的函數(shù)。例如,在150oC暴露1000小時(shí)后,銅貼片上的SAC焊料顯示出金屬間化合物的厚度約為7微米。CALCE EPSC的研究還表明,在浸銀的情況中,IMC的生長并不是時(shí)間的平方根的函數(shù),這是由于銀在整體焊料中的溶解[14]。然而,還沒有調(diào)查金屬間化合物生長和振動(dòng)的組合影響。
2.3 CALCE 蠕變腐蝕研究
蠕變腐蝕是一個(gè)質(zhì)量遷移的過程,在這個(gè)過程中固體腐蝕產(chǎn)物遷移到一個(gè)表面上。它已經(jīng)被確認(rèn)為是一種失效機(jī)理,是電觸點(diǎn)及電接觸器的誤功能的原因。由于貴金屬預(yù)鍍引線座在印刷電路組裝中的應(yīng)用,長期可靠性證明是現(xiàn)場使用IC元件的一個(gè)關(guān)注點(diǎn)。基于貴金屬冶金的預(yù)鍍引線座如Ni/Pd/Au,是圓形帶引線元件的一種商業(yè)上可得到的無鉛解決方案。德克薩斯儀表公司(TI)推出鎳上鍍鈀的引線座技術(shù)。在塑料元件的標(biāo)準(zhǔn)封裝過程中,封裝后的“修剪和成形”過程會(huì)將引線座材料(通常是銅)暴露到引線上。被暴露的銅為腐蝕的初始形成提供了場地。當(dāng)元件在嚴(yán)酷環(huán)境中工作時(shí),那么腐蝕過程就從被暴露的金屬區(qū)域開始并擴(kuò)展。由于鈀是一種貴金屬,在使用環(huán)境中不發(fā)生腐蝕,所以鈀的電鍍?yōu)殂~腐蝕產(chǎn)物的移動(dòng)提供了一個(gè)表面。在這種情況下,腐蝕產(chǎn)物可以移動(dòng)到引線上,并逐漸遷移到封裝的模塑表面上。當(dāng)相鄰引線上的腐蝕產(chǎn)物合并在一起時(shí),腐蝕產(chǎn)物的導(dǎo)電性可導(dǎo)致元件的短路或信號(hào)損壞。
2.4 CALCE錫枝狀晶體析出研究
錫枝狀晶體析出是與無鉛電子元件相關(guān)的一個(gè)關(guān)鍵可靠性問題。枝狀晶體析出是被拉伸的純錫單晶體,已經(jīng)被報(bào)告生長到超過10mm(250密耳)長(典型情況為1 mm或以下)、0.3至 10μm直徑寬(典型為1-3 μm)。枝狀晶體析出是在沒有作用的電場或潮濕條件下自發(fā)生長的(與樹枝狀不同),并且與大氣壓力無關(guān)(它們在真空下生長)。枝狀晶體析出可以是直的、彎折的、帶鉤的或分齒的,而有些被報(bào)告是中空的。它們的外表面通常是有條紋的。枝狀晶體析出可以非絲狀類型生長,有時(shí)被稱為塊狀或花狀。在電鍍后不久枝狀晶體析出可能就開始生長了。然而,生長的起動(dòng)
也可能需要多年。枝狀晶體析出潛伏期不可預(yù)見的本性以及隨后的生長,是要求長期可靠運(yùn)行的系統(tǒng)特別關(guān)注的問題。枝狀晶體析出發(fā)生在許多電鍍冶金中[1]。
CALCE EPSC一直與工業(yè)伙伴合作共同研究錫枝狀晶體析出以及模擬枝狀晶體析出的試驗(yàn)方法。這些工作的目的是為了確定錫枝狀晶體析出的加速因素,并在需要高可靠性的應(yīng)用(航空、國防)中示范錫枝狀晶體析出的轉(zhuǎn)移解決方案。
3. 需要做什么?
在向無鉛轉(zhuǎn)移中,對(duì)電子組件材料清單的改變正被高產(chǎn)量的消費(fèi)電子、計(jì)算機(jī)和移動(dòng)通訊工業(yè)所驅(qū)動(dòng),在這些工業(yè)中可靠性要求是不很嚴(yán)格的,而且產(chǎn)品壽命周期少于5年。然而,這些材料改變對(duì)長期或20年以上可靠性的影響卻不被了解。在服務(wù)于要求長期(超過5年)可靠性的市場的許多產(chǎn)品中將采用無鉛電子。在許多應(yīng)用中,電子產(chǎn)品將長期暴露于嚴(yán)酷溫度(過高、過低)、濕度、大氣污染及組合的熱-機(jī)械負(fù)載條件(溫度循環(huán) + 振動(dòng))。因而長期可靠性研究應(yīng)綜合這些作用條件的相互影響。這些相互影響應(yīng)包括(由于受高溫作用而引起的)不可接受的焊點(diǎn)上金屬間化合物生長、(由于受濕度和大氣污染而引起的)電子組件的電-化學(xué)降解、(由于長期暴露于低溫而引起的)錫瘟的形成、以及負(fù)載條件(振動(dòng)、溫度循環(huán)、溫度循環(huán) + 振動(dòng))對(duì)電子組件的影響。CALCE EPSC已經(jīng)起動(dòng)了一項(xiàng)針對(duì)這些要求的研究。
3.1. 實(shí)驗(yàn)的設(shè)計(jì)
設(shè)計(jì)實(shí)驗(yàn)的目的是,確定無鉛電子產(chǎn)品在選擇應(yīng)用環(huán)境中的長期(超過20年)可靠性。將分兩個(gè)階段進(jìn)行研究。第一個(gè)研究階段包括將試樣長期儲(chǔ)存在高溫(150oC)、低溫(-40oC)、短期振動(dòng)、長期高溫(135oC)/電氣偏壓高濕(85%RH)條件下。第二個(gè)研究階段包括使試樣經(jīng)受長期溫度循環(huán)(10000個(gè)周期),(溫度在-40oC 和 125oC之間變化),以及組合的負(fù)載條件(溫度循環(huán) + 隨機(jī)振動(dòng))。
長期暴露于高溫的結(jié)果,將增加金屬間化合物在焊點(diǎn)上的生長。由于這些化合物本質(zhì)上是脆的,所以在振動(dòng)應(yīng)力條件下它們會(huì)降低焊點(diǎn)壽命。因而,金屬間化合物的生長和振動(dòng)應(yīng)力環(huán)境之間的這種相互作用在建議的實(shí)驗(yàn)中將被研究。另一方面,暴露于低溫將會(huì)增強(qiáng)富錫無鉛焊點(diǎn)中錫瘟的形成。目前還不了解在振動(dòng)應(yīng)力條件下這種現(xiàn)象對(duì)焊點(diǎn)壽命產(chǎn)生的影響。建議的實(shí)驗(yàn)預(yù)計(jì)會(huì)對(duì)這種現(xiàn)象有所了解。電子產(chǎn)品長期暴露于潮濕條件將增加電化學(xué)過程,最終導(dǎo)致裝置、元件或PCB中金屬化腐蝕。在無鉛組件中這種機(jī)理得到進(jìn)一步加強(qiáng),由于較高的PCB組件溫度,可能引起比鉛基組件更大的惡化(材料降解污染物遷移)。
電子產(chǎn)品含有多種類型的元件:SMT元件(QFP、BGA、SOIC)、無引線載體、無源及通孔技術(shù)元件。選擇元件的基礎(chǔ)是,在焊點(diǎn)的柔性上產(chǎn)生變化(例如QFP與無引線陶瓷晶片載體)以及在焊點(diǎn)上產(chǎn)生熱不匹配應(yīng)力(例如:塑料BGA與陶瓷載體)。其次考慮的因素是,在元件的引線電鍍表面上產(chǎn)生變化。引線電鍍表面的改變包括電鍍無光錫、錫-銅和錫-鉍。就BGA而言,工業(yè)似乎已經(jīng)轉(zhuǎn)向于焊球組成SnAgCu。
在PCB組件方面,工業(yè)也已經(jīng)轉(zhuǎn)向了SnAgCu (SAC)焊膏用于SMT元件的回流焊接、SAC 或Sn0.7Cu用于通孔元件的波焊。因而這些材料將被安裝到基于目前工藝條件的實(shí)驗(yàn)裝備中。試驗(yàn)板將由兩種類型的板技術(shù)組成:表面安裝和單面通孔。表面安裝板將采用高Tg FR4 (Tg=170oC 至220oC)和聚酰亞胺制成,并且具有一個(gè)菊花鏈結(jié)構(gòu)從而能夠監(jiān)控電阻。板的尺寸為8英寸X 7英寸X 0.062英寸。單面通孔板是由CEM-1制成的,常用在許多電子系統(tǒng)包括洗衣機(jī)、干衣機(jī)。線路板將與選擇的封裝安裝在一起(帶有仿真硅夾模)。這些封裝都有導(dǎo)線接頭,用于連接相鄰的引線(而不是連接到夾模上),因而在安裝到試驗(yàn)板上后,能夠?qū)更c(diǎn)電阻進(jìn)行監(jiān)控。在應(yīng)力試驗(yàn)過程中,將利用商業(yè)可得到的電阻測量儀對(duì)封裝的電阻進(jìn)行監(jiān)測。在隨機(jī)振動(dòng)試驗(yàn)中,振動(dòng)應(yīng)力水平將取決于它在線路板的位置。這個(gè)方面需要考慮替代元件。將利用PCB振動(dòng)應(yīng)力分析來確定試驗(yàn)理想的元件替代方案。這些PCB還包含有一個(gè)結(jié)構(gòu),用于研究焊點(diǎn)的電化學(xué)降解。該結(jié)構(gòu)由間隔為0.5 mm (20 密耳)的貼片組成。這個(gè)間隔代表目前工業(yè)上所用的貼片間距。在PCB裝配中,將焊膏回流焊接到這些貼片上,產(chǎn)生焊島。在HAST測試中,在這些島之間作用電偏壓,來模擬兩個(gè)焊點(diǎn)
間電遷移的效果。經(jīng)受溫度循環(huán)的表面安裝板將在相鄰的每個(gè)元件上包含“熱斷路”特點(diǎn),從而方便失效的元件立即被拆下。這個(gè)特點(diǎn)將通過保留失效波形而有助于失效元件的分析。
為了代表線路板組件實(shí)際的生產(chǎn)條件,所有組件都是在大規(guī)模生產(chǎn)廠中制造的。實(shí)驗(yàn)包括商業(yè)可得到的PCB貼片:浸銀、浸錫、無電NiP/Au (ENIG)和有機(jī)可焊性保護(hù)劑 (OSP)。實(shí)驗(yàn)?zāi)P鸵舶◣в心壳昂U材料和工藝的PCB組件。實(shí)驗(yàn)設(shè)計(jì)如下:
圖1:為無鉛焊接產(chǎn)品的長期可靠性所設(shè)計(jì)的實(shí)驗(yàn)
3.2. 研究的預(yù)期結(jié)果
本長期可靠性研究的主要預(yù)期結(jié)果如下:
? 長期暴露于高溫條件后,確定焊點(diǎn)上金屬間化合物生長的程度,焊點(diǎn)是利用高產(chǎn)量組件工藝生產(chǎn)的,并且采用了商業(yè)元件表面電鍍和PCB貼片表面電鍍的多種組合。
? 評(píng)價(jià)任何尚未了解的風(fēng)險(xiǎn),例如長期暴露于低溫后在高錫焊點(diǎn)上錫瘟的形成。
? 確定帶有較厚的金屬間化合物以及可能的錫瘟的無鉛焊點(diǎn)的振動(dòng)疲勞壽命和失效模式。
? 確定(由于高溫?zé)o鉛焊接引起腐蝕失效的)PCB降解所帶來的影響。
? 確定無鉛焊點(diǎn)在組合溫度循環(huán) + 振動(dòng)條件下的壽命(與含鉛焊點(diǎn)比較),與多個(gè)相互作用因素的關(guān)系:高產(chǎn)量無鉛裝配工藝;元件類型,元件表面電鍍,PCB貼片表面電鍍。
? 確定在短期振動(dòng)、溫度循環(huán)及組合溫度循環(huán) + 振動(dòng)條件下焊點(diǎn)的失效機(jī)理及模式。比較無鉛組件的長期壽命和含鉛組件的長期壽命。
4. 結(jié)語
無鉛焊點(diǎn)在單一負(fù)載條件下短期耐久性(即少于5年),存在大量的數(shù)據(jù)。CALCE EPSC一直努力使工業(yè)能夠平穩(wěn)轉(zhuǎn)向無鉛電子。而對(duì)組合負(fù)載條件及長期耐久性的數(shù)據(jù)相當(dāng)少。在服務(wù)于要求長期(超過5年)可靠性的市場的許多產(chǎn)品中將采用無鉛電子。在許多應(yīng)用中,電子產(chǎn)品將長期暴露于嚴(yán)酷溫度(過高、過低)、濕度、大氣污染及組合的熱-機(jī)械負(fù)載條件(溫度循環(huán) + 振動(dòng))。因而長期可靠性研究應(yīng)綜合這些作用條件的相互影響。這些相互影響應(yīng)包括(由于受高溫作用而引起的)不可接受的焊點(diǎn)上金屬間化合物生長、(由于受濕度和大氣污染而引起的)電子組件的電-化學(xué)降解、(由于長期暴露于低溫而引起的)錫瘟的形成、以及負(fù)載條件(振動(dòng)、溫度循環(huán)、溫度循環(huán) + 振動(dòng))對(duì)電子組件的影響。CALCE EPSC已經(jīng)起動(dòng)了一項(xiàng)針對(duì)這些要求的研究。
5. 參考文獻(xiàn)
1. Ganesan, S. and Pecht, M., Lead-free Electronics, 2004 Edition, Edited by, CALCE EPSC Press, University of Maryland, College Park, Maryland2. Casey, P., S. Ganesan and M. Pecht, “Challenges in Adopting Pb-free Interconnects for “Green” Electronics,” Proceedings of the IPC/JEDEC Second International Conference on Lead-free Electronic Components and Assemblies, pp. 21-32, Taipei, Taiwan, 2002.
3. P. Casey and M. Pecht, “Assessing Lead-free Intellectual Property,” Circuit World, Vol. 30, No. 2, pp. 46-51, 2004.
4. P. Casey and M. Pecht, “The Technical, Social and Legal Outlook for Lead-Free Solders,” IEEE International Symposium on Electronic Material and Packaging, pp. 483-492, Kaohsiung, Taiwan, December, 2002
5. Zhang, Q., A. Dasgupta and P. Haswell, 2003, “Viscoplastic Constitutive Properties and Energy-Partitioning Model of Lead-free Sn3.9Ag0.6Cu Solder Alloy”, ECTC 2003, New Orleans, Louisiana, USA, 2003
6. Zhang, Q., A. Dasgupta, P. Haswell and M. Osterman, 2003a, “Isothermal Mechanical Fatigue of Lead-free Solders: Damage Propagation and Time to Failure,” 34th International SAMPE Technical Conference, Baltimore, MD, 2003
7. Zhang, Q., Dasgupta, A., and Haswell, P. “Creep and High-Temperature Isothermal Fatigue of Pb-Free Solders”, Proceedings of IPACK 03: International Electronic Packaging Technical Conference and Exhibition, July 6-11, 2003, Maui, Hawaii, USA, 2003
8. Zhang, Q., Haswell, P. and Dasgupta, A. “Isothermal Mechanical Creep and Fatigue of Pb-free Solders”, International Brazing &Soldering Conference, San Diego, CA, February 16-19, 2003
9. Zhang, Q., Haswell, P., and Dasgupta, A. “Cyclic Mechanical Durability of Sn-3.9Ag-0.6Cu and Sn-3.5Ag Lead-Free Solder Alloys”, Proceedings ASME IMECE 2002, New Orleans, LA, 2002
10. Zhang, Q., Haswell, P., Dasgupta, A., and Osterman, M. “Isothermal Mechanical Fatigue of Pb-free Solders: Damage Propagation Rate & Time to Failure”, 34th International SAMPE Technical Conference, Baltimore, MD, November 4-7, 2002
11. Haswell, P. and Dasgupta, A., “Viscoplastic Constitutive Properties of Lead-free Sn-3.9Ag-0.6Cu Alloy,” MRS Proceedings, San Francisco, CA, 2001
12. Haswell, P., “Durability Assessment and Microstructural Observations of Selected Solder Alloys,” Ph.D. Dissertation, University of Maryland, College Park, MD, 2001
13. Haswell,P. and Dasgupta, A. “Microthermomechanical Analysis of Lead-Free Sn3.9Ag0.6Cu Alloys, Part I: Viscoplastic Constitutive Properties, and Part II: Cyclic Durability Properties”, Paper N2.1, MRS Proceedings, Vol. 682E, MRS Spring Symposium on Microelectronics and Microsystems Packaging, Editors: Boudreaux, Dauskardt, Last, and McCluskey, Chicago, 2001
14. Zheng, Y., Hillman, C., and McCluskey, P. “Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints”, presented on AESF SUR/FIN 2002 June 24-27, Chicago, IL, 2002
15. Zheng, Y., Hillman, C., and McCluskey, P. “Intermetallic Growth on PWBs Soldered with Sn3.8Ag0.7Cu”, presented on Proceedings of the 52nd Electronic Components & Technology Conference, pp. 1226-1231, San Diego, 2002
16. Y. Fukuda, P. Casey and M. Pecht, “Evaluation of Selected Japanese Lead-Free Consumer Electronics,” IEEE Transactions on Electronics Packaging Manufactruing, Vol. 26, No. 4, pp. 305-312, October 2003.
17. Y. Fukuda, M. Pecht, K. Fukuda and S. Fukuda, “Lead-Free Soldering in the Japanese Electronics Industry,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 616-624, September, 2003
18. R. Ciocci, and M. Pecht, “Questions Concerning the Migration to Lead-free Solder,” Circuit World, Vol. 30, No. 2, pp. 34-40, 2004.
19. R. Ciocci, “Lead-free Solder Replacement: Beyond the Material Substitution,” Environmentally Conscious Manufacturing II, Vol. 4569, pp. 100-108, Newton, USA, 28-29, October 2001
20. R. Ciocci, “Lead-free Solder and the Consumer Electronics Market,” Proceedings of 2001 Green Engineering Conference, July 29-31, 2001, Roanoke, VA
21. N. Blattau and C. Hillman, “Has the Electronics Industry Missed the Boat on Pb-Free? Failures in Ceramic Capacitors with Pb-Free Solder Interconnects,” IPC/JEDEC 5th International Lead Free Conference on Electronic Components and Assemblies, San Jose, CA, March 18-19, 2004
22. N. Blattau, D. Barker and C. Hillman, “Lead Free Solder and Flex Cracking Failures in Ceramic Capacitors,” 2004 Proceedings - 24th Capacitor and Resistor Technology Symposium, San Antonio, Texas, March 29 - April 1, 2004
23. J. Wu and M. Pecht, “Fretting Corrosion Studies For Lead-Free Alloy Plated Contacts,” Proceedings of the 4th Electronics Packaging Technology Conference, Singapore, pp. 20-24, December 10-12, 2002
24. J. Wu, M. Pecht, and R. Mroczkowski, “Electrical Characterization of Lead-Free Solder Separable Contact Interfaces,” Journal of Surface Mount Technology, Vol. 14, Issue. 2, pp. 25-29, June 2002. Also presented at Pan Pacific Microelectronics Symposium, pp. 125-130, Maui, Hawaii, February 5-7, 2002
25. P. McCluskey, “Fatigue and Intermetallic Formation in Lead Free Solder Die Attach,” Proceedings of IPACK'01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, HI, July 9-13, 2001
26. Xie, J. S. and M. Pecht, “Palladium-plated Packages: Creep Corrosion and Its Impact on Reliability,” Advanced Packaging, Vol. 10, No. 2, pp. 39-42, February 2001.
27. Zhao, P. and M. Pecht, “Field Failure Due To Creep Corrosion On Components With Palladium Pre-Plated Leadframes,” Microelectronics Reliability, Vol. 43, pp. 775-783, May 2003.
標(biāo)簽:
pcba